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ABSTRACT

By perturbing properly a linear program to a separable quadratic program
it is possible to solve the latter in its dual variable space by iterative
techniques such as sparsity-preserving SOR (successive overrelaxations). In
this way large sparse linear programs can be handled.

In this paper-we give a new computational criterion to check whether the
solution of the perturbed quadratic programs provide the least 2-norm solution
of the original linear program. This criterion improves on the criterion
proposed in an earlier paper.

‘ﬂe also describe;an algorithm for solving linear programs which is based
on the SOR methods. The main property of this algorithm is that, under mild
assumptions, it finds the least 2-norm solution of a linear program in a
finite number of iterations.‘
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SIGNIFICANCE AND EXPLANATION

This paper provides the theory and practical algorithms for computing the

X unique smallest solution of a given linear program. The proposed ~ethod is

capable of handling very large sparse linear programs that cannot be solved by

the conventional simplex method.
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The responsibility for the wording and views expressed in this descriptive
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A FINITE ALGORITHM FOR THE LEAST TWO-NORM SOLUTION
OF A LINEAR PROGRAM

Stefano Luciai®
1. INTRODUCTION

It was shown in [?!] and {2; that the least 2-norm solution of a linear
program can bhe computed by "properly"” perturbing the linear program to a
separable quadratic program and by solving the latter in its dual variable by
iterative techniques such as SOR methods (see [3]). In this way large sparse
linear programs, not solvable by standard pivotal methods can be handled (see
[4), [1]). The main Aifficulty with this approach is that, until now, there
is no easy way to know "a priori" if the perturbed quadratic problems is a
"proper"” perturbation of the original linear program.

In order to overcome this difficulty a computational criterion to check
whether the solutions of the perturbed gquadratic program was given in [S] and
two algorithms where the perturbation parameter of the linear program is
decreased during the computational procedure were proposed in [6] and [5].

We give now an outline of the paper. Section 2 contains the problem
formulation. 1In Section 3 we characterize the least 2-norm solution of a
linear program in terms of the constraints which are active at that point.
This characterization will be utilized in subsequent sections of the paper.
In Section 4 we turn our attention to the problem of the perturbation of a
linear program and we propone a new criterion to check whether the solution of

the perturbed problem is in fact the leagt 2-norm solution of the linear

'Permanent address: 1Istituto di Analisi dei Sistemi ed Informatica, National
Research Council, Rome, Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. DCR-8420963, and by the Italian National Council of Research (CNR).




program. This criterion improves on that given in [S]. 1In the last section
we describe an algorithm for solving linear programs which is based on the SOR
method. The main property of this algorithm is that, under mild assumptions,
it finds the least 2-norm solution of a linear program in a finite number of
iterations.

We briefly describe the notation used. All the matrices and vectors are
real. For the n X n matrix A we denote row i by Ay column j by A.j
and the element in row i and column j by Aij' For x in the real n-
dimensional Euclidean space R, Xy denotes element i for i = 1,...,n
and x,_ denotes the vector with components (x, )y = max{xi,o} i=1.00,n.

All vectors are column vectors unless transposed by T. We will denote the 2-

1 /2

/2
T 2
norm, {(x x) = ( E xj) by Ixf, while R: will denote the nonnegative

3=1
orthant {x : xeR", x » 0}. For a point ¢ in R® and a closed set X in

R"  the 2-norm projection p,(c,X) of the point ¢ on X is defined

fc - p2(c,x)l = minlc-xtl .
xe X

For given index sets I, J we denote, as usual

|I| = number of indices in I

IJ = {i : iel, ieJ}

INT = {1 : ieI, i£J}
and °|I| will be a null vector of dimension |I|. Finally we denote the
identity matrix by E, AI will be the submatrix of A with rows Ai ie 1,

A the submatrix of A with elements Aij' ieI, e 3 and Xy will

1J

denote LT i eI




2. PROBLEM FORMULATION

We consider the linear program

Max ch
s.t. Ax < b (WD)
x> 0

where A e R", c ¢ ', be R® and X = {x : Ax<b, x>0} # #. ILet X denote
the (possibly empty) optimal solution set of (1). The least 2-norm solution
of (1), p2(0,§3, can be characterized as the unique solution of the

following problem

1 2
-1
Min 3 x\
s.t. Ax < b
(2)
x > 0
cx ? p

where p 1is the maximum value of (1).
Given any x € X, u e R and v ¢ R® we define the following index

sets:

[}

Ia(X) s= {{ +: A, x =D Ja(x) := {1 : x 0}

In(x) = {1 2 A, x < bi} ’ Jn(x) = {1 : x; > 0}

Id(u) = {1

[

> 0} v Jalv) i= {t : v, >0} .

Let Ib(x) and Jb(x) denote two index sets such that:
1) I(x) C Ty(x), Jplx) C J,(x).
1i) The vectors Af, ice Ib(x) and Ef, ie Jb(x) (where Ei is the
i-th row of the identity matrix) are linearly independent.
1ii) All the vectors Af, ie Ia(x)\Ib(x) and Ef, ie Ja(x)\Jb(x) are

linear combinations of vectors Af, ie tb(x) and EE, b Jb(x).




Furthermore we introduce the matrix B(x) € RdXd and the vectors q(x),

s(x) € R, where 4 = IIb(x)| + |Jb(x)|, as follows:
By, ) MENEN
B(x) := ¢ qlx) &= s S(x) := (B(x)B(x)T)-1q(x) .
(x) b_ (x)
AIb J Ib

REMARK 1. From iii) it follows that:

d

Vi € Ia(x)\Ib(x) there exists a z, € RO such that

™
e aix) zi = bi

- d

Vi e Ja(x)\Jb(x) there exists a z, € R" such that

T ™ ™~
Ei=B(x) z, q(x) zi—o .

(3)

-



3. PROPERTIES OF THE LEAST 2-NORM SOLUTION OF A LINEAR PROGRAM
In this section we show some elementary but important properties for the

least 2-norm solution of a linear program.

PROPOSITION 1. let x be a solution of the linear program (1) and (G;;) be
a solution of its dual. Then the following statements hold:
a) 1If ;'- p2(0j§) then x is also the least 2-norm solution of the

following system of equations

B(x)x = q(x) (4)
that 1s x = B(x) (BB ) 'a(®) = B0 Ts(x) .
b) If x = s(?)T(s(i)a(I)T)"q(';) + Ko, for gsome K € R, and ‘

s(x) _  _ €0,8(x) _  _ >0 if follows that x = p,(0,X). 1
Ib(x)\Id(u) Jh(x)\Jd(v)

|
i
¢) Moreover, if the gradients of active constraints are linearly independent «
— Al
at x then
- T — - =T -1 -
x = B (x)(B{x)B(x) ) q(x)

_ _ {a=z=nd <; = p2(0';)>
s(x) <0, s(x) >0 *

I, (x)\14(a) 3, O\ 4(w)

PROOF. PFirst of all we set

1 = Ia(x), J_ = Ja(x), In s In(x), Jn = Jn(x), Id 1= Id(u), Jd = Jd(v) .

a
I, = L, (%), 3 := 3 (x), B = B(x), q := q(x), 8 = 3(x) .

a) We prove this part by contradiction. Suppose that 2axists ;, with
x #.;, which is the least 2-norm solution of (4). Then all the points
x(0) = ox + (1-8)x, ¥8 ¢ R, solve (4) and from the maximum principle it
follows
XT(x(6) = %) =0 . (5)

By taking into account Remark 1 we have




. =T =T
Vi€ Ja\Jb xi(e) zin(G) =z q =0
~T ~T
¥ € Ia\Ib Aix(e) 7z Bx(0) = 2 q = bi .
Hence x. (8) = 0, A, x(6) = Db ¥ ¢ R. Since x. > 0 and
Ja ’ Ia Ia' Jn
A; x; < b, there exists a value ® € (0,1) such that Xy (8) > o,
n n n n

AI x(§3 < bI . Therefore x(§3 € X and it is, also, an optimal point for
n n

(1): in fact from the KKT conditions for (1) it follows:

-
3 x(9)J =u; AI J x(0) =u_ b = Cc X .
n n a an n a "a

— — T
ch(e) = ¢ a o

Hence we can conclude that x(g) is feasible for problem (2). Now, by
applying the maximum principle to problem (2) we obtain
- — —
x (x(8) - x) >0 .

Furthermore by (5) we have

0 < 2 (x(B) = %) = x (Bx + (1-0)% - %)

2

=8k - 1%y =T - 1% <o .

Therefore .; is the least 2-norm solution of (3) that is (see [7])
Xx=8T(8B") 'qg=58s .

b) By assumption we have

- T T T i
X =B g + XK = A s + A S + R -]
a
Igﬂzd Iﬂﬂld Ib\Id Ib\Id Jﬁqu Jb Jd
(6)
+ 33 \g. %a\g, t K
bp''a ‘bpd
and s <0, s > 0.
Ib\rd ' Jb\Jd
From the KKT condition for (1) it follows
Y(~ + A: u o gg 3& ) =0 ¥ eRrR . (7
d d d 4




Now, by adding (6 and (7), we obtain

x = (y+4K)C + A'; NI (Y;I A" Spar) ¢t A'i \1 Y;I . A:‘ \1 ('SI \1)
b 'd b a b 4 a'‘’p Ta''b p''da b a

T

—_ T —_
- E (Yv + 8 ) - E Yv - E s =0 .
me a me 4 be\x a J d\Jb J d\Jb Jb\J a Jb\J a
1If we choose a Y » 0 such that
Y+K > 0, YV + 8 >0, vyu -8 >0
me 4 anJ a Ibﬂx a4 Ibﬂr a
and we set
91 AL, T \0 S T s T A ’=Y‘Tr\ roYINrL T TStarL f
5a LMy LM a'% a b LM Ia b la
v 1= YV +s , V* 1= YV P 4 = 8 '
med bevd med Ja\Jb Ja\ Iy Jb\ Iy Jb\ Iy
Y* = Y+K, u; :s= 0, v& 2= 0
n n

we have that (;;Y',u*,v*) satisfy the KKT conditions for (2).
c) (==>) It follows from part b)
(<==) By the assumption that the gradients of the active const._aints are

linearly independent at ; we have

I.= 1y Iy = Jb .

From part a) it follows

X =Bs=A s +A. s +E s, +ED s (8)
Ig Tg  IMg TN Tg Tg 0 IN\Ty NI,

Now x solve also problem (2) and, hence, there exists u* » 0, v* > 0, Y* > 0

such that (;,Y',u*,v') satisfy the KKT conditions for (2), namely:

- T T

-u¥ + * + *

X = AI ( uy ) EJ vy Y*c
a a a

but by using the XKT condition for (1), that is

AT G B v
¢ ) S gV

I




we obtain
—_ — T —_
"’A;l (vuy -wp)+a s ('“i\r) +E§(V3 -y )
a 4 4d a ‘4 a 4 d 4 d
(9)
T
+ E v* .
J
Ja\Jd Ja\ a
- T
Then, by assumption, we have that the columns of B(x) are linearly
independent and, hence, there must exist only one vector y such that:
x = B(;5Ty. Therefore, from (8) and (9) we obtain
s = YG - u*% ’ s = vet - Y;. ‘
Id Id Id Jd Jd Jd
s =3 = % <0
I
Ib\Id 1\ a Ia\Id
-] =s = y* ?» 0
\ J
Jb\Jd 3, J a\Jd
and these last two inequalities complete the proof of part c}).
[

We are now ready to establish a criterion for determining when the
solution of the perturbed linear program is indeed the least 2-norm solution

of the unperturbed linear program.




4. PERTURBATION OF LINEAR PROGRAMS
In [1], [2] it was shown that the least 2-norm solution of the linear
program (1) can be obtained by solving a "proper" quadratic perturbation of

the linear progra.. In particular we have the following important result.

THEOREM 1. TLet the linear program (1) feasible. Then

a) 1) X AP ==>T e* >0 : pz(f-,X) = pz(o,'i) for all € € (0,e*]

X =0
11) _ <=={q €% > 0, x* : pz(g”x) = x* for all € € (0, e*))
x* = PZ(O.X)

T +
b) sSup ¢ X = ® (==)> sz(qu)u +® as € + 0 .

xeX

PROOF. See [2].

We can note that pzts,x) is also a solution of the problem

T T
Min % XX ~-CX
(11)

s.te AX < b
x> 0

and that the quadratic programming dual (see [8]) to (11) is

Min % IATu -y - clz + ebTu
(12)

s.t. (u,v) > 0

where the primal and dual variable x and (u,v) are related by

X = % (—ATu +v+c) . (13)

Until now there was no simple way of determining "a priori" the parameter e*
of Theorem 1. The next result which gives on "a posteriori"™ computational

scheme for €* shows why it is difficult to compute €* "a priori". 1In fact
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we can note that €* depends strictly on the least 2-norm solution of (1) (by

means of the vector s(;5, defined by (3)) and on the optimal solution of the

dual of the linear program (1).

PROPOSITION 2. Assume '§ # . let the gradients of the active constraints be
linearly independent at X = p2(0;§) and let (u*,v*) be the solution point
of the dual of the linear program (1). Then it follows that
c - —_
pz(ny) =X = pz(O,X) ¥ve e (0,e*)

where €* i3 given by

e* = min {[ min u',/s(;5i], [ _ min - vI/s(;5i]}
ie{icId(u*),s(x‘ ) ie{ieJd(v*),s(x)i<0}

(14)

where s(x) is defined by (3) and I,s(u*) = {i : uf > 0} and Jglve) =

{1 : vy o> 0}.

PROOF. We recall the definitions given in Section 2 and we set I, := Ia(;3,

= I_(x), Iy 1= 3_(x), Ig 1= Tglut), Jg 1= Ja(v¥), s := s(x).

Ja := Ja(x), In

Now, from the KKT conditions for (1) we have

-c + AT uid ~-Elys =0 . (15)

Id Jd Jd
By using part c) of Proposition 1 we obtain
e(x - A s, -A]\ 8 -E s, -E. ) =0 (16)
a4

E s
Ia\Id Ia\Id Jd Is Ja\Jd Ja\Jd

where s €0 and s » 0.
Ia\Id Ja\T g4

Hence, by adding (15) and (16), we obtain

- T T T T
Ex = C + A (u* - €8 ) + A (-es ) - E (v* + €38 ) - B (es ) =0 .
L P I xa\rd Id\Id CIAE A Ty Ja'\ad Ja\Jd

-10-




If we choose €* as the largest value of € such that

»* -
uId €8y >0 , v&

+ €8, 2 0
a Ja

d

(that is if €% is given by (14)) we can define ¥ ¢ ¢ (0,e*)

u(e)I = u; - esI ' u(e)I \1 1= -esI \1.' u(e)I =0 |, (17)

d d d a d a d n

v(e)J =0 (18)

v(€)J = yv* 4+ eg_ , v(e)
n

a Jd Jd

CACA esJa\Jd'
Then it turns out that (;,u(e),v(e)) is the unique sgsolution of the KKT
conditions for problem (11), ¥ € € (0,e*].

Therefore we have that

X = p,(0,%) = p,(Z,%) Ve e (0,6%)

and that (;(e);;(e)) is the unique optimal solution of the dual problem

(12}).

In order to overcome the inherent difficulty of determining e¢=*,

"a priori" a practical computational criterion was proposed in [5] to check
whether the solutions of the perturbed quadratic programs provide the least 2-
norm solution of the original linear program. This criterion required two
points (xi'“i'vi)' i = 1,2, that satisfy the KKT conditions for problem (11)
with two different values for €.

In the sequel we give an improved new criterion that requires only one
point (x,u,v) which satisfies the XXT conditions for problem {(11). However
this new criterion requires a matrix inversion. By contrast, no matrix
inversion was required in (5].

In the next theorem we make use of the index sets Ia(x), Ja(x), In(x),
Tn (%), Ip(x), Jp(x), Is(u), J4(v), the matrix B(x), and the vectors

q(x) and s{x) which were defined in section 2. Furthermore we assume that

-11-




Ia (;) U Ja(;) # B wvhere x is the solution of {(11), because otherwise we

have trivially that x # pz(O,;h

THEOREM 2. Let x be a solution of problem (11), that is x = pz(f.X). let
(4,Y) be a solution of the dual problem (12) and let €* bhe the optimal
value for € given by (14). Then

a)

a > -es(x) v > es(x) '
- S - X#£49
Ib(x) Ib(x) Jb(x) Jb(x)\

EEE D)

(E-BT (%) (BB ) 'B(X) 1e = ye

for some Y < 1

and (u*,v*) are optimal for the dual of the linear program (1) where

(v _ +es@ _) v -
I, (x) I, (x) I_(x)\I, (x)
u* = b (e b ’ u* - _ = ;..T—-—Yl_—' u* - 1=
I, (x) Ia(’"\"b(’" I.(x)
(19)
(v _ -es(x _) v oo -
J. (x) J_(x) I (x)\T, (x)
v = b Ty b P A _:=—a—1—:—y-b—-—-,v*_:=0.
Jb(x} Ja(x)\Jb(x) Jn(X)
(20)

b) If the gradients of the active constraints are linearly independent at ;,

then it follows that:

/

/E _ > -~es(x) _ ., v _ »es(x) _ // X7 \
1, (x) L(x) 3 (x) T, (%) 0<e<e* \>
PN
(e-8" () (B()B(D) ) T 'B(K) e = 0 \* * Py (X = p2(°'§/
-12~-




and, if x = p2(0,§), the optimal solution (u*,v*) of the dual of the
linear program (1) is given by (19) and (20) with y = 0, Ia(;) = Ib(;) and
3 () = 3, (x).

¢) If the gradients of the active constraints are linearly independent at x
and the strict complementarity holds for the linear program (1) at the least

2-norm solution p2(0,§5, then it follows that:

/; > —es(D . v > es(X) X# 9

/ I,(x) I,(x)  J.(x) J, (%)

»
(“ cm> 0 <e <e¢

\[E-BTGE)(a(?)a(i‘)’r)'1a(§)1c = 0 X = pz(g-,x) = pz(o,i)

J PROOF. Again we set TI_  := Ia(x), J, = Ja(x), In 1= In(x), J, = Jn(x),

a a
i I, := r.b(;), 3, = Jb&), T, = Id(ﬁ'), Ty = Jd(V), B := B(x), q = q(x),
s = s(;).
a) Define

] ; = E;"C .
Since the point (;;;};3 satisfies the KKXT condition for problem (11), the

point (;};;;5 satisfies the KKT conditions of the following problem

1 2
Min -5 lyl

Ay € €b = Ac (21)

Y>-c .

Therefore ;' is the optimal solution of (21).
By repeating the same steps of the proof of part 2) of Proposition 1 we
have that '; is the least 2-norm solution of the following system of

equations

-13-
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—

By = Eq ~ Bc . (22)
In fact, suppost not. Then there exists a ;, ; ¥ ;; which is the least norm
solution of (22). Then W¥9 the points y(0) = 9; + (1-8);. solve (22) and

(recalling Remark 1)

Py —T
vi € Ja\Jb yi(e) = ziBy(e) = zi(eq-ac) = -c,

~T ~T
Vi€ Ia\Ib Aiy(e) = zisy(e) = zi(Eq-Bc) = €b ~A,c .

and AI ; < ebI - AI c, there exists a value

n n n n
8 ¢ (0,1) such that y(e)J > - and A y(8) < €b, = Ay c. Therefore

J
n n n n n

y(8) = {y*' : Ay' < eb-Ac, y' > =c}.

Moreover, since ;} > =<3
n

Now, by applying again the maximum principle, we obtain
=T — ~o - ~ —2
0 <Y y@® -y =BT y-1md) =o0n? -am?) <o .
Hence we can conclude that '; is the least norm solution of (22), namely
¥ = 8°(BB") " ' [eq-Be]

from which

ex = [E - BY(BBT) " 'Blc + enT(BBT) g

= [E - BY(BBT) "'B]c + ¢BTs .

Now by recalling the KKT conditions for (11) we have

- T — T —
EX = Cc + AI u - EJ vy 0
a a a a

from which we obtain

T T, -1 T T — -
'E - B (BB') Blc +€B s - c + AI u, - EJ vy = 0
a‘a a a
- —_ T -
(B - BT(BBT) 1B]c -Cc + AT (uI +est ) + AI \1 uI \1
Hh v v a'lp fa'hy

T - T —
39y Ja\Jb Ja\Jb
-14~
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Ty

By assumptions we have [E - BT(BBT)'1B] = yc with gome ¥y < 1

u + €8 > 0, v - €8 >0 .
Ib Ib Jb Jb
Therefore if we set
= ., _
u’}, 68% “Ia\rb
u* = u* s u* = 0
1 - ’ - ’ ’
Iy Y Ia\Ib 1 -v T
V3. " €54 Vg
v* = b , V* \ :==-—---]D—---'E s V®E =0 ,
Jb 1 -y Ja Jb 1 - Jn

we have that (;,u*,v') satisfy the KKT conditions for the linear program

(1).

b) (==>) The proof of this implication follows directly from part a).
(<==) By using the KXT conditions for linear program (1) we know that

there exist (U,V) such that

T ~ T ~
-c 4+ AI uI EJ vJ = Q
a a a a
from which
;J
c=BT ~a .
u
I
a
Therefore we have
2
te-aT (887) " 'B)c = (E-BT(88T) 'BiBT . &l =0 .
Yy

Now, by repeating the same steps of proof of Proposition 2 and by using (17)

and (18) we obtain that

-15=
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¢) The proof of part c) follows from the proof of part b) and the proof of

Proposition 2 (see (17) and (18)).

REMARK 2. Part b) of Theorem 2 characterizes the solvability of a linear
program in terms of the solvability of a convex quadratic function minimiza-
tion on the non negative orthant (problem (12)) without any "a priori®”

assumptions regarding the solvability of the linear program (1).

We now turn our attention to computational procedures for determining the

least 2-norm solution of a linear program.

-16-




S. AN ALGORITHM WITH FINITE TERMINATION FOR LINEAR PROGRAMMING
The quadratic programming problem (12) can be solved by using a sparsity-
preserving SOR algorithm introduced in [4]. More specifically we have the

following algoritlim where we have assumed that Aj ¥ 0, vj = 1,000 ,Me

LPSOR Algorithm
Choose (u%,v%) € ®*, w ¢ (0,2) and € > 0.

k

Having (u ,vk) compute (uk+1,vk+1) as follows:

3=1 m
k+1 k w T k+1 T k k
ot - (uj -.;;_;5 (Aj(z£1 (A7) gu,” 4 zéj (A7) Juy - v -c)+ ebj))+
] 3>1
k=1,...,m
v . (vk - w(-ATuk+1 + vk + c))+ .

The principal and computationally-distinguishing features of this SOR
algorithm are that it preserves the sparsity structure of the problem and
require only simple operations, and, hence, very large problems can be
tackled.

We refer to (2] and [4] for a more complete description of sparsity-
preserving SOR algorithm, here we only recall the following convergence result

for the LPSOR Algorithm

PROPOSITION 3. Assume that i'# # and that the gradients of the active
constraints of the linear program (1) at the optimal point .; = pz(oii) are
linearly independent. let {(uk,vk)} be the sequence generated by the LPSOR
Algorithm. Then

a) There exists a real positive number €* such that for each € ¢ (0,e*],
the sequence {(uk,vk)} converges to a point (u(e),v(e)) which solves

problem (12) and the corresponding x(€) determined by (13) is independent of
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€ and x(€) = x = pz(O,;)-

b) Moreover, if strict complementarity holds for problem (1) at the least 2~
norm solution x = p2(0,§3, then there exists a real positive number ¢*+*,
€** ¢ €%, such that for each € ¢ (0,e**] there exists a k* such that for

all k > k* the following hola:

: ut = {1 : x
{1 : 0y >0 ={i:uf> 0} =1,(x)

{1 :uf =0 ={4:uf=0=1(x)
{1:v’1‘>o}={1:v1>o}=aa(;)
{i:v‘i(=0}={i:v!=0}=Jn(;)

where (u*,v*) is the optimal solution of the Aual of the linear program (1).

(Ia(x),In(x),Ja(x),Jn(x) were defined in section 2.)
PROOF. See [5].

In applying part i) of Proposition 2 we must be able to select a value of
€ such that € < €*. 1In order to ensure that ¢ € ¢e* we may have to choose
very small values for € yield a very slow convergence of the LPSOR Algorithm
when applied to the problem (12).

In order to overcome both the lack of a practical "a priori" selection
procedure for the parameter €* and the need to solve problem (12) exactly
many times for a decreasing sequence of € values (until one of the criteria
of Theorem 2, Corollary 1 or Theorem 2 of [S] is satisfied) we propone an
algorithm which is based on the results of the preceding sections

The key idea of this algorithm is similar to that of the algorithms
proposed in [S], [6]), where problem (12) is solved only approximately after

which € 13 decreased in a prescribed manner.
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The main distinguishing property of the present algorithm is that, under
mild assumptions, it finds the least 2-norm solution of the linear program (1)
in a finite number of iterations. The algorithm described below makes use of

two preselected sequences {eX} and {NX} such that

lime® =0 and Jim NS = 40 (23)
kreo koo
ALGORITHM I

Choose (u?,v0) e R§+“. Having (u¥~1,vX"Yy, (&,v*) 1is obtained by
1@plying Ne jterations of the SOR algorithm to the problem (12) with

k

€ = ¢X and by using (u*"',v¥"') as a starting point.

THEOREM 3. Assume that:

a) The linear program (1) is solvable.

b} The gradients of the active constraints are linearly independent at the
optimal point X = p2(0,§3.

c) The strict complementarity holds for the linear program (1) at the optimal
point x = p,(0,X).

Let {uX,vK} be the sequence produced by the algorithm and let

EJk

Ik = {1 : u: > 0} , Jk = {1 :v: > 0} , Bk t= -— . (24)
A k
I

Then there exist a x such that for all k » k it follows that the matrix
Bk has full rank and
k)Tsk

xX = (B =x = P2(0,§3

where
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gk = [8%(e%)T)7! . (25)

PROOF. By using Proposition 3 we have that there exist a €** and a k*
such that ¥ ¢ ¢ (0,e**] and ¥ k > k* we have (by recalling the definitions

given in section 2)

4

-— — k — —
It = Ia(x) = Ib(x), J = Ja(X) = Jb(X)

and, hence

k

Bk = 8%(x), & = s(x) .

Therefore, there exists a k large enough such that eX < €** and e > k*
and, hence, the proof of theorem follows from part a) of Proposition 1.

u
REMARK 3., Practically we 4o not need to compute the matrix (Bk(Bk)T)'1, we

only have to solve the system

(Bk(Bk)T)sk - .

Therefore any efficient sparsity preserving method fc. solving linear systems

of equations can be usged.

THEOREM 4. Assume that:

a) The linear program (1) has a unique solution .

b) The gradients of the active constraints are linearly independent at the
optimal point ';.

Let {uk,v®} be the sequence produced by the algorithm and let
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Ik = {{ : u: > 0}, Jk = {1 : v? > o}
(26)
* = {1 : uf = 0}, i vk=0 .
i i
Then there exist 8 k such that for all %k » X the matria A ek is a
IJ
square non singular matrix and
k -1 —
x = (A ) b =X .
7 ik

PROOF. By the assumptions a) and b) we have that the linear program (4) and
its dual have unique optimal solutions and that the strict complementarity
holds (see page 26 of [11]). Now, by using again Proposition 3 we have that

there exist a €** and k* such that ¥ € ¢ (0,e*?*] and ¥ k > k* we have
Kl (=1 =1, =3 =3 (X =3 (D
a Ib a ! a b 4

I =In(x)-{i:ui-0}, J =Jn(x)-{i:v1=0}

where (;);) is the optimal solution of the dual of the linear program (1).
Therefore for values of %k large enough (such that Ek < €%*%  and
Nk > k*) the proof of theorem follows by using usual argquments of the duality
theory for linear programs (see [11], vage 45).
]
In Algorithm I different stopping criterions can be used. As examples we
propone two algorithms. 1In Algorithm II the stopping criterion is basgsed on
Theorem 2 and Theorem 3 and it uses the properties of the multiplier function
A({x) for the linear program (1) (we refer to [9] and [19] for the definition
and the properties of the multiplier function A(x), here we recall only that
A(*) 1is a function from R to g such that if x is optimal for the

1 near program (1) X(:} gives the optimal solution of the dual of the linear

program) .
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Algorithm III is based on Theorem 4 and the duality theory for the linear
programs.

Again Algorithm II and Algorithm III make use of the preselected
sequences {€X} and {NX} such that {23) holds and the sequence

("}, (3%, {3, (3}, (&) and (6"} given by (24), (25) and (26).

ALGORITHM I1I
Data: (u?,v%) € RT*“

Step 0: Set k = 1.

Step 1: Compute (uk,vk) by applying Nk iterations of the SOR algorithm

to the problem (12) with € =¢€X and by using (u¥~1,¢%"1) as
gtarting point.
Step 2: 1f B has full rank, ukk > -ekskk, vkk > ekskk, -85 8%(2%) ") " '8%1c = o
I ) S | J

go to step 3; else go to step 5.
step 3: set x* = (B5)Ts® ana 1% = a(xX).
Step 4: 1If (x¥ 2% satisfy the KXT conditions for the linear program (1)

stop; else go to step 5.

Step : Set k = k+1, go to step 1.

REMARK 4. Step 2 i3 not necessary, it serves only to reduce the numbers of
computations of the multiplier function. If the computation of the matrix

(8%(85)T)~!

is too expensive we can replace step 2 with
Step 2': If K= iM, with i = 1,2,... , go to step 3; else go to step 5.

where M is a fixed positive number.

COROLLARY 1. Under the assumption a), b) and c¢) of Theorem 3, Algorithm II

terminates in a finite number of iterations and the produced point x’ i3 the

-2~
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least 2-norm solution of the linear program (1) and AV  is the optimal

solution of its dual.

PROOF. The proof follows by repeating similar arquments of proof of Theorem 3

and by using part c) of Theorem 2 and the properties of the multiplier

function.

ALGORITHM III
pata: (u%,v0) ¢ RT+".

Step 0: Set k = 1.

Step 1: Compute (uk,vk) by applying Nk iteration of the SOR algorithm to

the problem (12) with € = eX ana by using (uk-1,vk_1) as starting

point.
Step 2: If A K~k is a square nonsingular matrix go to step 3; else go the

1J
step 5;
-1 k T -1
step 3: Set 2X = (A ) b, w = (A, ) c,.
1J I IJ J
step 4: It 2% >0, (A, 2 -b ) <o, wr0, T WF-c o0
1J I I Jk J

else go to step 5.

step 5: Set k = k+1, go to step 1.

COROLLARY 2. Under the assumption a) and b) of Theorem 4, Algorithm III

Y]

terminates in a finite number of iterations and if (z¥,w’) is the produced

point and if (x",u’) is defined as follows

2’ if 1€ 3% woif 1€ 1%
i 1
v o_ & .
xi « ’ i - .
0 if 1 eJ 0 if 1e1
-23—
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Then x° is the unique optimal solution of the linear program (1) and w18

the optimal solution of its dual.

PROOF. The proof follows from Theorem 4 and from the duality theory for

linear programs (see [11], pages 45-50).

For brevity's sake, here we do not discuss an interesting algorithm which
is the conjunction of Algorithm I of this paper with the algorithm proposed in
[6]. In fact such an algorithm would be linearly or superlinearly convergent
under assumptions weaker then those of Theorem 3 and would also have finite

termination under the agsumption a) = c) of Theorem 3.
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